Properties of a nonlinear version of the stimulus-frequency otoacoustic emission.

نویسندگان

  • Kyle P Walsh
  • Edward G Pasanen
  • Dennis McFadden
چکیده

A procedure for extracting the nonlinear component of the stimulus-frequency otoacoustic emission (SFOAE) is described. This nSFOAE measures the amount by which the cochlear response deviates from linear additivity when the input stimulus is doubled in amplitude. When a 4.0-kHz tone was presented alone, the magnitude of the nSFOAE response remained essentially constant throughout the 400-ms duration of the tone; response magnitude did increase monotonically with increasing tone level. When a wideband noise was presented alone, nSFOAE magnitude increased over the initial 100- to 200-ms portion of the 400-ms duration of the noise. When the tone and the wideband noise were presented simultaneously, nSFOAE magnitude decreased momentarily, then increased substantially for about the first 100 ms and then remained strong for the remainder of the presentation. Manipulations of the noise bandwidth revealed that the low-frequency components were primarily responsible for this rising, dynamic response; no rising segment was seen with bandpass or highpass noise. The rising, dynamic nSFOAE response is likely attributable to activation of the medial olivocochlear efferent system. This perstimulatory emission appears to have the potential to provide information about the earliest stages of auditory processing for stimuli commonly used in psychoacoustical tasks.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Near equivalence of human click-evoked and stimulus-frequency otoacoustic emissions.

Otoacoustic emissions (OAEs) evoked by broadband clicks and by single tones are widely regarded as originating via different mechanisms within the cochlea. Whereas the properties of stimulus-frequency OAEs (SFOAEs) evoked by tones are consistent with an origin via linear mechanisms involving coherent wave scattering by preexisting perturbations in the mechanics, OAEs evoked by broadband clicks ...

متن کامل

Evoked otoacoustic emissions arise by two fundamentally different mechanisms: a taxonomy for mammalian OAEs.

Otoacoustic emissions (OAEs) of all types are widely assumed to arise by a common mechanism: nonlinear electromechanical distortion within the cochlea. In this view, both stimulus-frequency (SFOAEs) and distortion-product emissions (DPOAEs) arise because nonlinearities in the mechanics act as "sources" of backward-traveling waves. This unified picture is tested by analyzing measurements of emis...

متن کامل

Comparing stimulus-frequency otoacoustic emissions measured by compression, suppression, and spectral smoothing.

Stimulus-frequency otoacoustic emissions (SFOAEs) have been measured in several different ways, including (1) nonlinear compression, (2) two-tone suppression, and (3) spectral smoothing. Each of the three methods exploits a different cochlear phenomenon or signal-processing technique to extract the emission. The compression method makes use of the compressive growth of emission amplitude relati...

متن کامل

Overshoot measured physiologically and psychophysically in the same human ears.

A nonlinear version of the stimulus-frequency otoacoustic emission (SFOAE) was measured using stimulus waveforms similar to those used for behavioral overshoot. Behaviorally, the seven listeners were as much as 11 dB worse at detecting a brief tonal signal (4.0 kHz, 10 ms in duration) when it occurred soon after the onset of a wideband masking noise (0.1-6.0 kHz; 400 ms in duration) than when i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of the Acoustical Society of America

دوره 127 2  شماره 

صفحات  -

تاریخ انتشار 2010